

Lazy Shadowing: power-aware resilience for extreme scale systems

Impact

- A new concept to add resilience at extreme scale with affordable overhead in performance and power.
- MPI implementation allows transparent recovery from faults
 1) Brings fault-tolerance to main stream high performance computing.

2) Provides resilience at extreme scale with a low overhead relative to replication and checkpointing.

• Combination with program slicing for faster fault detection and better resilience at lower energy overhead

PI: Rami Melhem (University of Pittsburgh) CoPI: Taieb Znati (University of Pittsburgh) CoPI: Krishna Kant (Temple University)

Novel Ideas

- A form of replication with slow replicas (low overhead)
- A form of checkpointing with roll forward (efficient recovery)
- Partial replicas through program slicing (faster error detection)
- Optimize a combined function of resilience, power and time
- Shadows/replicas can be slowed down by a factor of K by
 - Reducing voltage/frequency by a factor of K (DVFS)
 - Collocating K shadows on the same node
- Shadow leaping reduces the recovery time
- Rejuvenation (shadow as a rescuer rather than a hot spare)

Milestones/Dates/Status

Analytical modeling	Dec. 2015
Preliminary evaluation of shadowing and slicing	June 2016
Apply shadowing to map/reduceImplement lazy shadowing in MPI	Dec. 2016 Dec. 2016
Implement/analyze fault-induced leapingEvaluate shadowing Vs. checkpointing	June 2017 June 2017
Integration of slicing and shadowingImplement/analyze rejuvenation	Dec. 2017 Dec. 2017
Implement/analyze forced leapingFinding the optimal forced leaping interval	June 2018 June 2018