
Lazy Shadowing - An Adaptive, Power-Aware, Resiliency 
Framework for Extreme Scale Computing 

Rami Melhem, University of Pittsburgh (Principal Investigator) 
Taieb Znati, University of Pittsburgh (Co-Investigator) 

Krishna Kant, Temple University (Co-Investigator) 
 
The path to extreme scale computing involves several 
major road blocks and numerous challenges inherent 
to the complexity and scale of these systems. A key 
challenge stems from the stringent requirement, set by 
the US Department of Energy, to operate in a power 
envelope of 20 Megawatts. Another challenge stems 
from the huge number of components, order of 
magnitudes higher than in existing HPC systems, 
which will lead to frequent system failures, 
significantly limiting execution progress. This puts 
into question the viability of traditional fault-tolerance 
methods and calls for a reconsideration of the fault-
tolerance and power-awareness problem, at scale.  

A common approach to resilience relies on time 
redundancy through checkpointing and rollback 
recovery. Specifically the execution state is 
periodically saved to a stable storage, allowing 
recovery from a failure by restarting from a 
checkpoint (after rebooting the failed processor 
or on a spare). As the rate of failure increases, 
however, the time to periodically checkpoint 
and rollback leads to a significant drop in 
efficiency and increase in power. A second 
approach to resilience is replication, which 
exploits hardware redundancy by executing 
simultaneously multiple instances of the same 
task on separate processors. The physical 
isolation of processors ensures that faults occur 

independently, thereby enhancing tolerance to failure. This approach, however, suffers from low efficiency 
as it dedicates at least 50% of the resources to replicas. This project explores a novel paradigm, Lazy 
Shadowing, to achieve high resiliency using a hybrid of time and hardware redundancy. Its basic tenet is to 
associate with each process a shadow that executes in parallel, but on a different processor and at a reduced 
rate. The successful completion of the main process causes the immediate termination of the shadow, 
resulting in significant energy savings over straight replication.  When a main process fails, the shadow’s 
execution rate is increased to achieve fast recovery. The reduced initial shadow execution rate can be 
derived based on the time-to-solution, power constraints, required resiliency and likelihood of failure.  

Different approaches can be used to control execution rate, including co-locating multiple shadows on a 
single processor and/or using Dynamic Voltage and Frequency Scaling. Harnessing the full potential of 
Lazy Shadowing brings about challenging design problems involving interplay between resilience, 
forward progress and power. Shadow Leaping is used to address these challenges. First, when the shadow 
of a failed main is recovering, the shadows of the non-failed mains roll forward their execution state to 



match that of their main processes, which reduces the recovery time for any subsequent fault because it 
reduces the divergence between the shadows and their mains. We call this Fault-induced Leaping.  In the 
absence of faults, the diversion between mains and shadows can be periodically reduced through Forced 
Leaping.  A challenging aspect of Shadow Leaping is in achieving state and communications consistency 
between main processes and their associated shadows. The project investigates adaptive and energy-
efficient approaches to achieve state consistency between main and shadow processes. It also develops 
efficient algorithms and data 
structures to maintain state 
consistency, efficient message 
logging and correct recovery upon 
failure. Different design tradeoffs 
are explored taking into account the 
fact that increasing the roll-forward 
frequency and/or increasing the 
execution rate of the shadows will 
reduce the size of the message log 
at the price of reducing the 
efficiency and/or increasing the 
power/energy consumption.  

When the shadows of K main processors are co-located on one processor, the K+1 processors form a 
shadowed set. When a fault occur in a main, the execution rate of its shadow is increased by stalling the 
execution of the other shadows co-located with it. Consequently, the shadowed set becomes vulnerable 
and may not tolerate any subsequent fault in the set. This vulnerability can be avoided by a Rejuvenation 
process, in which we restart a new process to replace the failed one (after rebooting the failed processor or 
on a spare) and use leaping to roll forward the new process' state to the correct state recovered by the 
shadow. At this point the execution rate of the shadow can be reduced again and the execution of the other 
shadows collocated with it can resume, thus removing the vulnerability of the shadowed set. 

In this project, we are constructing a prototype of Lazy Shadowing 
implemented in MPI. When a user starts R ranks, the system 
transparently creates R additional ranks for the shadows and 
collocates every K shadows on a physical processor. An MPI 
wrapper intercepts MPI calls and conform them to Lazy shadowing. 
For example, when a rank, i, sends a message to rank j, the wrapper 
translates this call to two “send” calls to rank j and its shadow at 
rank j+R. The “send” is normally suppressed on shadows. The 
wrappers also exchange control messages to guarantee timeliness 
and correctness of recovery. The final implementation will support 
shadow leaping and rejuvenation. 

A program typically computes one or more “state variables” that go into defining the program output. A 
“program slice” relative to a state variable X, denoted S(X), is the smallest subset of program code that 
computes X. The size of S(X) depends on to what extent X depends on other state variables. If S(X) is 
small, executing it in parallel with the original program (along with “acceptance tests” of the results) can 
significantly accelerate error detection.  The proposed research considers how program slicing can be 
exploited for error detection and enhancing resilience. In particular, lazy Shadowing can be combined with 
slicing in that the slices that are fraction of their mains can run lazily and provide fault detection capability 
with reasonable coverage. For example, running at 20% the size of the main program can detect up to 40% 
of the errors. This project provides compiler techniques to generate slices and the underlying analysis to 
estimate the corresponding detection coverage. It also explores online learning techniques to estimate the 
reliability of various parts of an application and accordingly optimize the distribution of slices.  


