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EXASCLALE

CHALLENGES

ENERGY
To operate 

within 
affordable 

power budgets

I/O STORAGE
To access/store 
information at 
high capacities 
and with low 

latencies. 

PARALLELISM
Exploit the 

extreme levels 
of parallelism 

effectively

RESILIENCE
To both 

permanent and 
transient faults 

and failures



Conflicting 
Interests

Performance
Throughput

Completion Time

Power 
Consumption

Power Constraints
Energy 

Consumption

Resilience
Permanent and 
Transient faults 

and failures

Objective: Optimize any combination of the three
Constraints:  Bound any of the three



Lazy Shadowing

Hardware 
Redundancy

Fault Tolerance

Restart ReplicationCheckPoint
Restart

Time Redundancy

Tradeoff of Time & Hardware Redundancy under TTS Constraints



LAZY SHADOWING – BASIC MODEL

• Associate a “shadow” process with each main process
• Shadows run at lower execution rate than associated mains to save 

energy

Dynamic Voltage and 
Frequency Scaling 

(DVFS)
To Save Dynamic 

Power

Process Collocation
To Save Static Power

Execution Rate 
Control



Main Process

Shadow Process

Shadow Process
Terminates

Task Completes

W
or

k 
C

om
pl

et
ed

Time

LAZY SHADOWING
SUCCESSFUL COMPLETION

mσ

bσ



Main Process

Shadow Process
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After Failure
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WITH FAILURE
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Message
buffer

XShadow

Main
Message Message

1. Size of message buffer grows 
with shadow/main divergence.

2. Time to recover from failure 
grows with divergence Main

Shadow time

Work

Divergence

LAZY SHADOWING ANALYSIS

Message 
Consumed



BarrierBarrier

LEAPING – TO REDUCE DIVERGENCE

Turning a Foe into a Friend – While shadow of failed main recovers, all other shadows 
leap forward to synchronize their states with their mains



• When divergence between the 
main and its associated shadow 
reaches a threshold, “forced 
leaping” is invoked 

FORCED LEAPING

• Leaping, forced or failure-induced, entails forward 
rolling to synchronize the shadow’s  and main’s state
– Process migration techniques are applicable, with reduced 

overhead

•Shadow leaping is applicable, regardless of the 
mechanism used to control execution rate

–DVFS or Collocation



DEALING WITH MULTIPLE FAILURES
• Shortcoming – Vulnerability of Lazy Shadowing increases with 

the number of failures
• Failures of a main and its shadow, for example, causes failure of the 

entire system

• How to mitigate impact of multiple failures?
• Shadow Suite – Associate more than one shadow, executing at 

decreasing rates, with each main, based on  application criticality

• Too expensive

• Leads to higher divergence between main and its shadows

• Rejuvenation upon failure

• Restoring main full state, upon shadow leaping 



REJUVENATION PROCESS 

Recovery
(Rebooting) 

Main 
Leaping

Full Resilience 
Restoration

Reduced Rate



SHADOW INTEGRATION INTO MPI –
CALL WRAPPING

• SEND()@MAIN – REPLICATES 
MESSAGE TO ASSOCIATED 
SHADOWS

• SEND@SHADOW: SUPPRESSES 
MESSAGE 

• RECEIVE()@MAIN – UNCHANGED

• RECEIVE()@SHADOW – MODIFIES 
SENDER’S RANK

• Control messages may be required to ensure deterministic execution

• MPI any-source call

• Leaping – User registers state to be transferred 

• Similar to user-level checkpointing

Shadowj+N

Mainj

XShadowi+N

Maini

Message

Message
buffer

Send()
receive 
wrappers



LAZY SHADOWING – SLICING FOR FAULT 
DETECTION

A workload slice is a set of programs statements 
that may affect the values at some point of interest
• Construct sliced shadows that computes only  

subsets of the state variables
• Compare the results of slices with mains for 

correctness

Recovery
Shadows

Detection 
Shadows

• Sizes of slices 
depend on the 
control and 
data flows in 
the program



Conclusions

• Lazy Shadowing is a hybrid model that harnesses hardware and time 
redundancy, to optimize TTC under transient and permanent failures of space 
and time redundancies

– Trades off resilience, performance and power/energy
– Converges to space or time redundancy, to closely meet the workload TTS and 

resiliency requirements
– Can be implemented using DVFS or Colocation 

• Leaping allows shadow to roll-forward and elimination of  main/shadow 
computational divergence

• Rejuvenation mitigates impact of multiple failures 
– Restore system full system resilience upon multiple failures

• Early results demonstrate efficiency at extreme scale
• Future Work

– “Harden” implementation of Rejuvenation and Slicing in MPI
– Testing and Analysis
– Application of Shadow Computing to Data-intensive HPC Applications – “Burning the 

candle from both sides”
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