
SHADOW COMPUTING – AN
ADATIVE POWER-AWARE

RESILIENCY FRAMEWORK FOR
EXASCALE COMPUTING

TAIEB ZNATI‡, RAMI MELHEM‡ AND KRISHNA KANT†

‡UNIVERSITY OF PITTSBURGH

†TEMPLE UNIVERSITY

OUTLINE

• INTRODUCTION AND BACKGROUND

• SHADOW COMPUTING – ADAPTIVE FRAMEWORK FOR FAULT

TOLERANCE

• BASIC MODEL – LAZY SHADOWING

• LEAPING FOR FORWARD PROGRESS

• FAILURE-INDUCED AND FORCED LEAPING

• REJUVENATION TO MITIGATE IMPACT OF MULTIPLE FAILURES

• CONCLUSION AND FUTURE WORK

EXASCLALE

CHALLENGES

ENERGY
To operate

within
affordable

power budgets

I/O STORAGE
To access/store
information at
high capacities
and with low

latencies.

PARALLELISM
Exploit the

extreme levels
of parallelism

effectively

RESILIENCE
To both

permanent and
transient faults

and failures

Conflicting
Interests

Performance
Throughput

Completion Time

Power
Consumption

Power Constraints
Energy

Consumption

Resilience
Permanent and
Transient faults

and failures

Objective: Optimize any combination of the three
Constraints: Bound any of the three

Lazy Shadowing

Hardware
Redundancy

Fault Tolerance

Restart ReplicationCheckPoint
Restart

Time Redundancy

Tradeoff of Time & Hardware Redundancy under TTS Constraints

LAZY SHADOWING – BASIC MODEL

• Associate a “shadow” process with each main process
• Shadows run at lower execution rate than associated mains to save

energy

Dynamic Voltage and
Frequency Scaling

(DVFS)
To Save Dynamic

Power

Process Collocation
To Save Static Power

Execution Rate
Control

Main Process

Shadow Process

Shadow Process
Terminates

Task Completes

W
or

k
C

om
pl

et
ed

Time

LAZY SHADOWING
SUCCESSFUL COMPLETION

mσ

bσ

Main Process

Shadow Process
Shadow Process
Increases Speed

After Failure

Main Process
Fails Task Completes

W
or

k
C

om
pl

et
ed

Time

LAZY SHADOWING
WITH FAILURE

mσ

= Shadow speed before failure

= Shadow speed after failureaσ

Message
buffer

XShadow

Main
Message Message

1. Size of message buffer grows
with shadow/main divergence.

2. Time to recover from failure
grows with divergence Main

Shadow time

Work

Divergence

LAZY SHADOWING ANALYSIS

Message
Consumed

BarrierBarrier

LEAPING – TO REDUCE DIVERGENCE

Turning a Foe into a Friend – While shadow of failed main recovers, all other shadows
leap forward to synchronize their states with their mains

• When divergence between the
main and its associated shadow
reaches a threshold, “forced
leaping” is invoked

FORCED LEAPING

• Leaping, forced or failure-induced, entails forward
rolling to synchronize the shadow’s and main’s state
– Process migration techniques are applicable, with reduced

overhead

•Shadow leaping is applicable, regardless of the
mechanism used to control execution rate

–DVFS or Collocation

DEALING WITH MULTIPLE FAILURES
• Shortcoming – Vulnerability of Lazy Shadowing increases with

the number of failures
• Failures of a main and its shadow, for example, causes failure of the

entire system

• How to mitigate impact of multiple failures?
• Shadow Suite – Associate more than one shadow, executing at

decreasing rates, with each main, based on application criticality

• Too expensive

• Leads to higher divergence between main and its shadows

• Rejuvenation upon failure

• Restoring main full state, upon shadow leaping

REJUVENATION PROCESS

Recovery
(Rebooting)

Main
Leaping

Full Resilience
Restoration

Reduced Rate

SHADOW INTEGRATION INTO MPI –
CALL WRAPPING

• SEND()@MAIN – REPLICATES
MESSAGE TO ASSOCIATED
SHADOWS

• SEND@SHADOW: SUPPRESSES
MESSAGE

• RECEIVE()@MAIN – UNCHANGED

• RECEIVE()@SHADOW – MODIFIES
SENDER’S RANK

• Control messages may be required to ensure deterministic execution

• MPI any-source call

• Leaping – User registers state to be transferred

• Similar to user-level checkpointing

Shadowj+N

Mainj

XShadowi+N

Maini

Message

Message
buffer

Send()
receive
wrappers

LAZY SHADOWING – SLICING FOR FAULT
DETECTION

A workload slice is a set of programs statements
that may affect the values at some point of interest
• Construct sliced shadows that computes only

subsets of the state variables
• Compare the results of slices with mains for

correctness

Recovery
Shadows

Detection
Shadows

• Sizes of slices
depend on the
control and
data flows in
the program

Conclusions

• Lazy Shadowing is a hybrid model that harnesses hardware and time
redundancy, to optimize TTC under transient and permanent failures of space
and time redundancies

– Trades off resilience, performance and power/energy
– Converges to space or time redundancy, to closely meet the workload TTS and

resiliency requirements
– Can be implemented using DVFS or Colocation

• Leaping allows shadow to roll-forward and elimination of main/shadow
computational divergence

• Rejuvenation mitigates impact of multiple failures
– Restore system full system resilience upon multiple failures

• Early results demonstrate efficiency at extreme scale
• Future Work

– “Harden” implementation of Rejuvenation and Slicing in MPI
– Testing and Analysis
– Application of Shadow Computing to Data-intensive HPC Applications – “Burning the

candle from both sides”

	Shadow Computing – AN ADATIVE Power-Aware resiliency framework for exascale computing
	outline
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Lazy Shadowing – Basic Model
	Lazy Shadowing�Successful Completion
	Lazy shadowing�with Failure
	Lazy shadowing Analysis
	LEAPING – To reduce Divergence
	FORCED LEAPING
	Dealing with Multiple Failures
	Rejuvenation Process
	Shadow Integration into MPI – Call Wrapping
	Lazy Shadowing – Slicing for Fault Detection
	Slide Number 16

