
Power consumption
• Power constraints
• Thermal ramification

Performance
• Throughput
• Completion time

Resilience
• Fault tolerance
• Fault detection
• Fault recovery

Objective = optimize any (or a combination) of the three
Constraints = bound any of the three

100’s 
petaflops

20MW Cap

MTTF/node = 5 years 
MTTF/50000 nodes = 1 hour 

Conflicting requirements of extreme scale computing

Lazy Shadowing
An Adaptive, Power-Aware, Resiliency

Framework for Extreme Scale Computing

Fault Tolerance

Roll-back ReplicationLazy
Shadows

The Fault Tolerance Spectrum
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Laziness through shadow Co-location
• Reduce shadow’s execution rate by overloading 

multiple shadows on the same processor
• May also reduce frequency/voltage
• Reduces hardware and power requirement
• Co-located shadows + their mains form a shadowed set

recovery

Time

Work

Time

• A shadow for each main
• Shadows run at reduced rate 

(energy/performance tradeoff)
• If main completes, shadow 

terminates (low overhead)
• If one main fails, shadow’s rate 

increases (fast recovery)
• While a shadow recovers, other 

mains wait due to 
synchronization

• Recovery depends on gap 
between main and shadows 
(divergence)

Time

divergence

leaping

divergence

• Needs control messages to ensure deterministic 
execution in some MPI call (ex. any-source)

• For Leaping, user should register the state to be 
transferred (similar to user-level checkpointing)

Fault-induced leaping

Time

leaping

Time

leaping

• Divergence grows in the 
absence of faults (causing long 
recovery from future faults)

• May periodically reduce 
divergence by leaping

• May leap when receive buffers 
at shadow exceeds a certain 
threshold.

Forced leaping

Recovery
and reboot Main 1

leaping

Vulnerability 
removed • Main reboots as shadow recovers

• Shadow recovers at full speed
• Rebooted main leaps to the 

recovered state and continues at 
full speed

• Shadow continues (at reduced 
rate)  system not vulnerable

Rejuvination to avoid vulnerability

Shadow
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XShadow
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Main (i)
message

Message
buffersend 

wrappers
receive 
wrappers

• Send at main: replicate msg. 
• Send at shadow: suppress msg
• Receives at main: unchanged
• Receive at shadow: modify 

sender’s rank

Implementation through MPI call wrappers
Example: MPI send/receive

• Shadows roll-forward to the 
state of their mains

• Reduces recovery time for 
subsequent faults by reducing 
shadow/main divergence
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M2

Promote S2 to M2

Terminate S1 & S3

M = main
S = shadow

A vulnerable shadowed setA shadowed set

M2

• Construct sliced shadows that computes only 
subsets of the state variables

• Acceptance tests on computed variables to 
check for errors

Recovery 
shadows

Detection 
shadows

Lazy shadows for Slice-based fault detection

Sizes of slices depend 
on the control and 
data flows in the 
program

• A subsequent fault in a vulnerable shadow set = failure

When a main fails

Results from a prototype MPI implementation

a) Overhead for different 
benchmarks using 256 ranks

b) Scalability of overhead for 
HPCCG (fault-free execution)

c) Comparison with checkpointing
for different number of faults

(a) (b)

(c)
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