
Power consumption
• Power constraints
• Thermal ramification

Performance
• Throughput
• Completion time

Resilience
• Fault tolerance
• Fault detection
• Fault recovery

Objective = optimize any (or a combination) of the three
Constraints = bound any of the three

100’s
petaflops

20MW Cap

MTTF/node = 5 years
MTTF/50000 nodes = 1 hour

Conflicting requirements of extreme scale computing

Lazy Shadowing
An Adaptive, Power-Aware, Resiliency

Framework for Extreme Scale Computing

Fault Tolerance

Roll-back ReplicationLazy
Shadows

The Fault Tolerance Spectrum

Time
redundancy

Space
redundancy

Enables trade-off
between time and
space redundancy

R. Melhem and T. Znati
U. Of Pittsburgh

K. Kant
Temple U.

Laziness through shadow Co-location
• Reduce shadow’s execution rate by overloading

multiple shadows on the same processor
• May also reduce frequency/voltage
• Reduces hardware and power requirement
• Co-located shadows + their mains form a shadowed set

recovery

Time

Work

Time

• A shadow for each main
• Shadows run at reduced rate

(energy/performance tradeoff)
• If main completes, shadow

terminates (low overhead)
• If one main fails, shadow’s rate

increases (fast recovery)
• While a shadow recovers, other

mains wait due to
synchronization

• Recovery depends on gap
between main and shadows
(divergence)

Time

divergence

leaping

divergence

• Needs control messages to ensure deterministic
execution in some MPI call (ex. any-source)

• For Leaping, user should register the state to be
transferred (similar to user-level checkpointing)

Fault-induced leaping

Time

leaping

Time

leaping

• Divergence grows in the
absence of faults (causing long
recovery from future faults)

• May periodically reduce
divergence by leaping

• May leap when receive buffers
at shadow exceeds a certain
threshold.

Forced leaping

Recovery
and reboot Main 1

leaping

Vulnerability
removed • Main reboots as shadow recovers

• Shadow recovers at full speed
• Rebooted main leaps to the

recovered state and continues at
full speed

• Shadow continues (at reduced
rate) system not vulnerable

Rejuvination to avoid vulnerability

Shadow
(j+N)

Main (j)

XShadow
(i+N)

Main (i)
message

Message
buffersend

wrappers
receive
wrappers

• Send at main: replicate msg.
• Send at shadow: suppress msg
• Receives at main: unchanged
• Receive at shadow: modify

sender’s rank

Implementation through MPI call wrappers
Example: MPI send/receive

• Shadows roll-forward to the
state of their mains

• Reduces recovery time for
subsequent faults by reducing
shadow/main divergence

M1 M2 M3

S4 S5
S6M4 M5 M6

S7 S8
S9M7 M8 M9

S1 S2
S3 M1 M2 M3

S4 S5
S6M4 M5 M6

S7 S8
S9M7 M8 M9

M2

Promote S2 to M2

Terminate S1 & S3

M = main
S = shadow

A vulnerable shadowed setA shadowed set

M2

• Construct sliced shadows that computes only
subsets of the state variables

• Acceptance tests on computed variables to
check for errors

Recovery
shadows

Detection
shadows

Lazy shadows for Slice-based fault detection

Sizes of slices depend
on the control and
data flows in the
program

• A subsequent fault in a vulnerable shadow set = failure

When a main fails

Results from a prototype MPI implementation

a) Overhead for different
benchmarks using 256 ranks

b) Scalability of overhead for
HPCCG (fault-free execution)

c) Comparison with checkpointing
for different number of faults

(a) (b)

(c)

	Slide Number 1

