e A shadow for each main

e Shadows run at reduced rate
(energy/performance tradeoff)

 If main completes, shadow
terminates (low overhead)

e |f one main fails, shadow’s rate
increases (fast recovery)

 While a shadow recovers, other
mains wait due to
gy synchronization
ivergence

N — * Recovery depends on gap
between main and shadows
(divergence)

Fault-induced leaping

it
T =" e Shadows roll-forward to the

L state of their mains

leaping  Reduces recovery time for
Time subsequent faults by reducing
= shadow/main divergence
A

Forced leaping

e Divergence grows in the
absence of faults (causing long
recovery from future faults)

* May periodically reduce
divergence by leaping

 May leap when receive buffers
at shadow exceeds a certain
threshold.

Implementation through MPI call wrappers

message Example: MPI send/receive
!_’.. e Send at main: replicate msg.
M []
cend / bu‘:;?éagé\ wcoive ® Send at shadow: suppress msg

WFappers o) /Wrappers * Receives at main: unchanged
A D

\ * Receive at shadow: modify

sender’s rank

 Needs control messages to ensure deterministic
execution in some MPI call (ex. any-source)

e For Leaping, user should register the state to be
transferred (similar to user-level checkpointing)
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The Fault Tolerance Spectrum

J Fault Tolerance
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Performance
e Throughput
e Completion time

Resilience
e Fault tolerance
e Fault detection
e Fault recovery

Power consumption
e Power constraints
e Thermal ramification

-~ -

Objective = optimize any (or a combination) of the three
Constraints = bound any of the three

Laziness through shadow Co-location

* Reduce shadow’s execution rate by overloading
multiple shadows on the same processor

* May also reduce frequency/voltage

* Reduces hardware and power requirement

* Co-located shadows + their mains form a shadowed set

A vulnerable shadowed set
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* A subsequent fault in a vulnerable shadow set = failure

Rejuvination to avoid vulnerability

When a main fails

T * Main reboots as shadow recovers
“ _——* Shadow recovers at full speed
> ~ * Rebooted main leaps to the
w eaping  recovered state and continues at

> full speed

e Shadow continues (at reduced
rate) = system not vulnerable

Recovery
and reboot Main 1

Lazy shadows for Slice-based fault detection

e Construct sliced shadows that computes only ®
subsets of the state variables

Recovery
shadows

e

* Acceptance tests on computed variables to oo

check for errors Q Detection

shadows

Sizes of slices depend
on the control and
data flows in the
program

Results from a prototype MPI implementation
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