e A shadow for each main

e Shadows run at reduced rate
(energy/performance tradeoff)

 If main completes, shadow
terminates (low overhead)

e |f one main fails, shadow’s rate
increases (fast recovery)

 While a shadow recovers, other
mains wait due to
gy synchronization
ivergence

N — * Recovery depends on gap
between main and shadows
(divergence)

Fault-induced leaping

it
T =" e Shadows roll-forward to the

L state of their mains

leaping Reduces recovery time for
Time subsequent faults by reducing
= shadow/main divergence
A

Forced leaping

e Divergence grows in the
absence of faults (causing long
recovery from future faults)

* May periodically reduce
divergence by leaping

 May leap when receive buffers
at shadow exceeds a certain
threshold.

Implementation through MPI call wrappers

message Example: MPI send/receive
!_’.. e Send at main: replicate msg.
M []
cend / bu‘:;?éagé\ wcoive ® Send at shadow: suppress msg

WFappers o) /Wrappers * Receives at main: unchanged
A D

\ * Receive at shadow: modify

sender’s rank

 Needs control messages to ensure deterministic
execution in some MPI call (ex. any-source)

e For Leaping, user should register the state to be
transferred (similar to user-level checkpointing)

An Adaptive, Power-Aware, Resiliency
Framework for Extreme Scale Computing

R. Melhem and T. Znati
U. Of Pittsburgh

K. Kant
Temple U.

The Fault Tolerance Spectrum

J Fault Tolerance

| M'\'

Lazy r
Roll-back Replication
{} Shadows P
: " Enables trade-off |
Time . Space
between time and
redundancy redundancy
. space redundancy
h _________________________ l

Performance
e Throughput
e Completion time

Resilience
e Fault tolerance
e Fault detection
e Fault recovery

Power consumption
e Power constraints
e Thermal ramification

-~ -

Objective = optimize any (or a combination) of the three
Constraints = bound any of the three

Laziness through shadow Co-location

* Reduce shadow’s execution rate by overloading
multiple shadows on the same processor

* May also reduce frequency/voltage

* Reduces hardware and power requirement

* Co-located shadows + their mains form a shadowed set

A vulnerable shadowed set

‘‘‘‘‘
-
prs
-

A shadowed set

~~~~~
S~
~

S~
~

. M=main
s3 S =shadow ' M1 N2 M3 M?2

~o P
~o P
~< -

s
P
-
-
-

———

M4| (M5| [M6| P2l )

Terminate S1 & S3

M7 M8 M9 M7 M8 M9

* A subsequent fault in a vulnerable shadow set = failure

Rejuvination to avoid vulnerability

When a main fails

T * Main reboots as shadow recovers
“ _——* Shadow recovers at full speed
> ~ * Rebooted main leaps to the
w eaping  recovered state and continues at

> full speed

e Shadow continues (at reduced
rate) = system not vulnerable

Recovery
and reboot Main 1

Lazy shadows for Slice-based fault detection

e Construct sliced shadows that computes only ®
subsets of the state variables

Recovery
shadows

e

* Acceptance tests on computed variables to oo

check for errors Q Detection

shadows

Sizes of slices depend
on the control and
data flows in the
program

Results from a prototype MPI implementation

10000 1600 20%

1.95% 2 47% 1400

B mB S g | 15%
1000 5 649 =

1000 10% 3

]
800 =
@

Time (s)

100 v

Execution time (s

400
10 — 0%

= 200

0 -5%
1 1 2 - 8 16 32 64 128 256

(a ) EP IS HPCCG  CoMD  miniFE MG  miniAero b
baseline Msr MPI

Number of processes
= haseline * srMPI overhead

a) Overhead for different

—

—

benchmarks using 256 ranks :

S
S 4000 =
o

b) Scalability of overhead for o
HPCCG (fault-free execution) O T

=
=

c) Comparison with checkpointing
for different number of faults (€ ¢ ¢ owtamt P

Number of failures
checkpointing srMP1_2 srMPl_4




	Slide Number 1

